Infiltration of air pollutants and effectiveness of air cleaners

Prabjit Barn
Santé et environment: enjeux, rôles et interventions
June 3, 2010 | Montreal, QC
Outline

• Infiltration of pollutants to indoors
 – O_3, NO$_2$, PM$_{2.5}$

• PM$_{2.5}$ and air cleaner use
 – exposure reduction
Infiltration

Fraction of outdoor pollutants that penetrate indoors and remain suspended

Modified from Thatcher and Layton (1995)
Infiltration cont.

\[F_{\text{inf}} = \frac{P \cdot a}{a + k} \]

- \(F_{\text{inf}} \) = infiltration efficiency
- \(P \) = penetration
- \(a \) = air exchange
- \(k \) = deposition
Measuring infiltration

• Compare indoor - outdoor levels when no sources are present
 – Tracer
 – Time period (e.g. night time)

• Take continuous of measurements of indoors – outdoor levels
 – remove indoor-generated portion
Ozone

• Typically indoor levels are low
 – few indoor sources; major source is outdoor ozone

• Penetration of ozone to indoors is low
 – reacts with building materials as it moves indoors
 – moves through open windows in summer

• Once indoors, ozone is quickly removed
 – half-life is 7-10 minutes
Nitrogen dioxide

- Indoor sources: kerosene heaters, un-vented gas and wood stoves, ETS
- Outdoor sources: Vehicle and ship traffic, industrial processes
- Indoor levels vary across homes and seasons:
 - Indoor > outdoor during winter in homes with sources
 - Indoor < outdoor generally for homes without sources
 - 50-70 % of NO₂ infiltrates from outdoors
Particulate matter

- Indoor sources: ETS, cooking, cleaning, wood stoves

- Outdoor sources: wood burning, traffic, forest fires, industrial processes

- F_{\inf} typically higher for smaller particles
 - Penetration is particle size dependent
Particle penetration

PM < 2.5 µm
PM 2.5 - 10 µm
PM > 10 µm

Penetration efficiency

0 %
100 %
Improving indoor air quality

1. Reduce indoor-generated pollution

2. Modify air exchange rate (AER)
 – Depends on pollutant source

3. Filter indoor air
Air cleaner use as a public health intervention

- Air cleaners can increase deposition of particles
 - Can decrease exposure
 - Decreased exposure can potentially lead to some health benefits: Particles are known to trigger underlying mechanisms leading to disease processes, including asthma
Types of Air Cleaners

• Set – up
 – in-duct: part of HVAC system, designed to clean air from whole house
 – portable: clean air from a single room

• Operation
 – mechanical filter: filter particles, eg. High Efficiency Particulate Air (HEPA)
 – electronic precipitators & ion generators: charge particles in the air
Ozone and air cleaning

- Ozone generators produce ozone to clean air while some electrostatic precipitators produce it as a by-product
 - ozone is a respiratory irritant
 - exposure poses a health concern

- Health Canada has issued a warning against the use of ozone generators

- Residential ozone generators are no longer approved by Canadian Standards Association
HEPA filters and exposure reduction

• Particulate pollutants
 – Indoor sources: ETS, fungal spores, dust, allergens
 – Outdoor sources: Traffic, wood smoke, forest fire smoke

• Studies find substantial decreases in pollutant concentrations with air cleaner use
 – 90 % decrease in baseline dog allergen concentrations in a room within 24 hours2
 – 80 % decrease in baseline fungal spore concentrations in a room within 24 hours3
 – 30-70 % reductions in baseline ETS particles in a home after a 2 month period4

• Effectiveness varies among studies due to study design
 – Number of devices, time period, AER, air cleaner placement
Air cleaner effectiveness

Depends on both:

• Efficiency of device (filter) at removing the pollutant
 – MERV (in duct) or CADR (portable) ratings

• Amount of air “cleaned” by device (filter)
 – AER, room size, time
Increasing ACE

AER is an important factor for both indoor air quality and ACE

– if indoor sources are dominant, an increase in AER can improve IAQ
– if outdoor sources are dominant, a decrease in AER can improve IAQ and improve ACE
Outdoor AQ and air cleaners in homes

<table>
<thead>
<tr>
<th>Study</th>
<th>Exposure</th>
<th>Air cleaner</th>
<th>Study Period</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brauner et al. 2008<sup>5</sup></td>
<td>Traffic</td>
<td>Portable HEPA</td>
<td>+ filter: 48hr, - filter: 48 hr</td>
<td>Lower PM<sub>2.5</sub> levels during + filter period (GM: 4.7 ± 0.8 µg/m<sup>3</sup>) vs. - filter period (GM: 12.6 ± 1.4 µg/m<sup>3</sup>) across homes (n= 21)</td>
</tr>
<tr>
<td>Allen et al. 2009<sup>6</sup></td>
<td>Wood smoke</td>
<td>Portable HEPA</td>
<td>+ filter: 7d, - filter: 7d</td>
<td>Lower PM<sub>2.5</sub> F<sub>inf</sub> during + filter period (0.20 ± 0.17) vs. - filter period (0.34 ± 0.17) across homes (n=25)</td>
</tr>
<tr>
<td>Barn et al. 2008<sup>7</sup></td>
<td>Forest fire & wood smoke</td>
<td>Portable HEPA</td>
<td>+ filter: 24hr, - filter: 24hr</td>
<td>Lower PM<sub>2.5</sub> F<sub>inf</sub> on + filter days (0.13 ± 0.14) vs. - filter days (0.42 ± 0.27) across homes (n= 29)</td>
</tr>
<tr>
<td>Henderson et al. 2005<sup>8</sup></td>
<td>Fire smoke</td>
<td>Portable ESP</td>
<td>24 - 48hr</td>
<td>Indoor PM<sub>2.5</sub> levels 63-88 % lower in treatment vs. matched control homes (n= 4 pairs) ; mean 24 hr indoor PM<sub>2.5</sub> ≤ 3 µg/m<sup>3</sup> in treatment homes vs. 5.2 – 21.8 µg/m<sup>3</sup> in control homes</td>
</tr>
</tbody>
</table>
In-duct filters

• Few studies have evaluated in-duct filters outside of chamber tests

• Comparison of in-duct vs. portable units showed higher particle removal rates for in-duct vs. portable units⁹
 – Portable units may not effectively draw air from other rooms, hallways

• PM₂.₅ removal rates⁹:
 – baseline: 0.5 hr⁻¹
 – portable HEPA: 2.4 hr⁻¹
 – in-duct media filter: 4.6 hr⁻¹
 – in-duct high efficiency electrostatic: 7.5 hr⁻¹

• Removal rates higher for same home when unoccupied
Key Points

• Levels of indoor pollutants will differ depending on their infiltration efficiencies and the presence of indoor sources

• HEPA filter air cleaners can lower indoor particle levels and thereby reduce exposure
 – AER and room size are important determinants
 – In-duct filters may be more effective at lowering PM$_{2.5}$ levels in the whole house

• Air cleaners can be particularly useful when outdoor AQ is poor
Thank You

Questions?
Comments?

www.ncceh.ca | www.ccnse.ca
References

Other references used: